Put A Little Pigeon In Your Next Clock Project

If you’re anything like us, you’ve probably wondered why gear teeth are shaped the way they’re shaped. But we’ll go out on a limb and say you’ve never wondered why gear teeth aren’t shaped like pigeons, and what a clock that’s not quite a clock based around them would look like.

If this sounds like it has [Uri Tuchman] written all over it, give yourself a cookie. [Uri] has a thing for pigeons, and they make an appearance in nearly all his whimsical builds, from his ink-dipping machine to his intricately engraved metal mouse. For this build, pigeons are transformed into the teeth of a large, ornate wheel, cut from brass using an impressive Friedrich Deckel pantograph engraver. To put the pigeon wheel to work, [Uri] built an escapement and a somewhat crooked pendulum, plus a drive weight and dial. It’s almost a clock, but not quite, since it doesn’t measure time in any familiar units, and the dial has a leg rather than hands — classic [Uri].

It may not be [Clickspring]-level stuff, but it’s still a lovely piece of work, and instructive to boot. The way [Uri] figured out the profile for the meshing teeth by looking at the negative space swept out by the pigeon profiles was pretty sweet. Plus, pigeons.

Continue reading “Put A Little Pigeon In Your Next Clock Project”

Customizable Bird Clock Sings The Hours By

For those looking to build their own clocks, one of the easiest ways to get started is with a pre-built module that uses a simple quartz oscillator and drives a set of hands. This generally doesn’t allow for much design of the clock besides the face, and since [core weaver] was building a clock that plays bird songs, a much more hackable clock driver was needed to interface with the rest of the electronics needed to build this project.

The clock hands for this build are driven by a double stepper motor which controls an hour and minute hand coaxially but independently. Originally an H-bridge circuit was designed for driving each of the hands but they draw so little current in this configuration that they could be driven by the microcontroller directly. A DS3231 clock is used for timekeeping connected to an ATMega128a which controls everything else. At the start of each hour the clock plays a corresponding bird song by communicating with an mp3 module, and a remote control can also be used to play the songs on demand.

Bird clocks are not an uncommon thing to find off the shelf, but this one adds a number of customizations that let it fly above those offerings, including customizing the sounds that play on the hour and adding remote control capabilities, a lithium battery charging circuit, and a number of other creature comforts. If you’re looking for even more unique bird clock designs this binary bird clock might fit the bill.

Continue reading “Customizable Bird Clock Sings The Hours By”

A 3D-printed clock that uses flaps for the digits that get rotated.

Non-Split-Flap Clock Does It With Fewer Flaps

As cool as split-flap clocks and displays are, they do have a few disadvantages. The mechanism sticks out on the side, and the whole thing relies on gravity. Some people don’t care for the visual split in the middle of each digit that comes as a result. And their cousins, the Numechron clocks? Those wheels, especially the hours wheel, are really big compared to the size of what they display, so the clock housings are huge by comparison.

[shiura] decided to re-invent the digital display and came up with this extremely cool spinning flap mechanism that uses a lip to flip each flap after it is shown. Thanks to this design, only half the number of flaps are needed. Not only is the face of the clock able to be much larger compared to the overall size of the thing, the whole unit is quite shallow. Plus, [shiura] tilted the display 15° for better visibility.

If you want to build one of these for yourself, [shiura] has all the STLs available and some pretty great instructions. Besides the printed parts, you don’t need much more than the microcontroller of your choice and a stepper motor. Check out the demo/build video after the break, and stick around for the assembly video.

Don’t mind the visual split in the numbers? Check out this split-flap clock that uses a bunch of magnets.

Continue reading “Non-Split-Flap Clock Does It With Fewer Flaps”

A DIY split-flap clock in red, black, and white.

Split-Flap Clock Uses Magnets Everywhere

While split-flap alarm clocks once adorned heavy wood nightstands in strong numbers, today the displays are most commonly found in train stations and airports. Hey, at least they’re still around, right? Like many of us, [The Wrench] has always wanted to make one for themselves, but they actually got around to doing it.

A DIY split-flap clock and its magnetic base.This doesn’t seem like a beginner-friendly project, but [The Wrench] says they were a novice in 3D design and so used Tinkercad to design all the parts. After so many failures, they settled on a design for each unit that uses a spool to attach the flaps, which is turned by a stepper motor.

A small neodymium magnet embedded in the primary gear and a Hall effect sensor determine where the stepper motor is, and in turn, which number is displayed. Everything is handled by an Arduino Nano on a custom PCB.

Aside from the sleek, minimalist look, our favorite part is that [The Wrench] used even more magnets to connect each display segment to the base. You may have noticed that there are only three segments, because the hours are handled by a single display that has flaps for 10, 11, and 12. This makes things simpler and gives the clock an interesting look. Be sure to check out the build video after the break.

Want to build a more complicated clock? Try suspending sand digits in the air with persistence of vision.

Continue reading “Split-Flap Clock Uses Magnets Everywhere”

POV Digital Clock Is The Literal Sands Of Time

Sand has been used to keep track of the passage of time since antiquity. But using sand to make a persistence of vision digital clock (English translation) is something altogether new. And it’s pretty cool, too.

The idea behind the timepiece that [Álvaro Gómez Giménez] built is pretty simple drop a tiny slug of fine sand from a hopper and light it up at just the right point in its fall. Do that rapidly enough and you can build up an image of the digits you want to display. Simple in concept, but the devil is in the details. Sand isn’t the easiest material to control, so most of the work went into designing hoppers with solenoid-controlled gates to dispense well-formed slugs of sand at just the right moment. Each digit of the clock has four of these gates in parallel, and controlling when the 16 gates open and close and when the LEDs are turned on is the work of a PIC18F4550 microcontroller.

The build has a lot of intricate parts, some 3D printed and some machined, but all very carefully crafted. We particularly like the big block of clear plastic that was milled into a mount for the main PCB; the translucent finish on the milled surfaces makes a fantastic diffuser for the 96 white LEDs. The clock actually works a lot better than we expected, with the digits easy to make out against a dark background. Check it out in the video below.

Between the noise of 16 solenoids and the sand getting everywhere, we’d imagine it wouldn’t be a lot of fun to have on a desk or nightstand, but the execution is top-notch, and an interesting and unusual concept we haven’t seen before. Sure, we’ve seen sandwriting, but that’s totally different. Continue reading “POV Digital Clock Is The Literal Sands Of Time”

An RGB LED clock that resembles a color blindness test.

RGB LED HexaClock Doesn’t Actually Light Up The Night

Who says a clock can’t be both useful and beautiful? That seems to be the big idea behind the lovely little HexaClock from [Bulduper]. And boy, is it both.

Probably the most important part of this well-illuminated clock is the light sensor, which allows it to adjust the brightness automatically. If you’re not into that, well, there’s a really nice web app that’ll let you program the dickens out of it.

The brains of this thing is an ESP8266 on a custom PCB which controls the 127 individually addressable RGB LEDs. The clock may look large, but the big printed parts just fit on the bed of a Prusa i3. [Bulduper] used ABS because the LED strip and the PCB might get a little warm; they didn’t want to risk using PLA and having it turn into a Salvador Dali clock (although that could be cool).

Speaking of heat, make sure to use 18 AWG or thicker wires as [Bulduper] advises. LEDs may be efficient, but this clock uses lots of them! If you want to build one of these to bathe your wall in useful light, everything you need is available on GitHub. Watch HexaClock do its thing in the brief demo and walk-through video after the break.

If this is a little too bright for your tastes, check out this synesthesia clock.

Continue reading “RGB LED HexaClock Doesn’t Actually Light Up The Night”

Synesthetic Clock Doesn’t Require Synesthesia

We often think of synesthetes as those people who associate say, colors with numbers. But the phenomenon can occur with any of the senses. Simply put, when one sense is activated, synesthesia causes one to experience an unrelated, activated sense. Sounds trippy, no?

Thankfully, [Markus Opitz]’s synesthetic clock doesn’t require one to have synesthesia. It’s actually quite easy to read, we think. Can you tell what time it is in the image above? The only real requirement seems to be knowing the AM color from the PM color. The minute display cycles through blue, green, yellow, and red as the hour progresses.

Behind that pair of GC9a01 round displays lies an ESP32 and a real-time clock module. [Markus] couldn’t find a fillArc function, so instead he is drawing triangles whose ends lie outside the visible area. To calculate the size of the triangle, [Markus] is using the angle function tangent, so each minute has an angle of 6°.

[Markus] created a simple but attractive oak housing for the clock, but suggests anything from cardboard and plastic to a book. What’s the most interesting thing you’ve ever used for an enclosure? Let us know in the comments.

Do you appreciate a good analog clock when you see one? Here’s a clock that uses analog meters for its display.